Another Undecidability Example

Let \mathcal{L}_{101} be the set of encodings of TMs that accept the string 101 and no other string. Is \mathcal{L}_{101} Recursively Enumerable?

Answer: No. Reduce complement of \mathcal{L}_{u} to it.
Given (M, w) we create M^{\prime}. M^{\prime} takes input x. If x is $101, M^{\prime}$ accepts x. If x is not 101 M^{\prime} ignores x and simulates M on w, accepting x if M accepts w.

If M accepts $\mathrm{w}, \mathrm{M}^{\prime}$ accepts all strings. If M^{\prime} does not accept $\mathrm{w}, \mathrm{M}^{\prime}$ accepts only 101.
A recognizer for \mathfrak{L}_{101} will recognize if M does not accept w. Thus, a recognizer for \mathfrak{L}_{101} creates a recognizer for the complement of \mathcal{L}_{u}, and we know that can't exist.

